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The discontinuous profile method for simulating
two-phase flow in pipes using the single component

approximation

Vincent Guinot*,1

International Institute for Infrastructure Hydraulic and En�ironmental Engineering—IHE, Delft, Netherlands

SUMMARY

Godunov-type algorithms are very attractive for the numerical solution of discontinuous flows. The
reconstruction of the profile inside the cells is crucial to scheme performance. The non-linear generaliza-
tion of the discontinuous profile method (DPM) presented here for the modelling of two-phase flow in
pipes uses a discontinuous reconstruction in order to capture shocks more efficiently than schemes using
continuous functions. The reconstructed profile is used to define the Riemann problem at cell interfaces
by averaging of the components of the variable in the base of eigenvectors over their domain of
dependence. Intercell fluxes are computed by solving the Riemann problem with an approximate-state
solver. The adapted treatment of boundary conditions is essential to ensure the quality of the computa-
tional results and a specific procedure using virtual cells at both extremities of the computational domain
is required. Internal boundary conditions can be treated in the same way as external ones. Application
of the DPM to test cases is shown to improve the quality of computational results significantly.
Copyright © 2001 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The modelling of two-phase flow in pipe systems has a wide range of possible applications to
industrial design, amongst which may be mentioned the design of hydraulic and nuclear power
plants. Apart from difficulties arising from the interaction between the fluid and the mechan-
ical structure, the computation of such flow poses two problems. The first one is the influence
of highly variable wave speeds on the behaviour of the solution and the handling of strong
shock waves. The second one is related to the high number of reflections to which the waves
are subject and the subsequent effort that must be devoted to the treatment of boundary
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conditions. The first problem has been abundantly addressed in the past in the field of gas
dynamics and free-surface flow, but the latter is more specific to network problems and the
implications of the use of high-order schemes in algorithms for hydraulic networks have not
yet been much explored. The aim of this paper is to provide solutions for the one-dimensional
modelling of two-phase flows in pipe networks under the single component approximation
using a higher-order Godunov-type scheme.

Under the assumption of a small fraction of gas, the equations describing two-phase flows
in pipes of a can be written in the following conservative form:
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where A (m2) is the pipe cross-sectional area, c (m s−1) is the local speed of sound in the
mixture, cw (m s−1) is the local speed of sound in the absence of gas, p (Pa) is the pressure,
p0 (Pa) is a reference pressure, q (kg s−1) is the mass discharge, � (dimensionless) is a
coefficient characterizing the behaviour of the gas fraction, � (dimensionless) is the fraction of
volume occupied by the gas phase, �0 (dimensionless) is the value of � for the reference
pressure p0, � (kg m−1) is the mass per unit length of pipe, �g (kg m−3) is the fluid density
and �g,0 (kg m−3) is the fluid density at pressure p0. Equations (1.1c) and (1.1d) for the celerity
are a generalization [4] of a formula provided by other authors [1,2] under the assumption of
no slip between the gas and the liquid phases. Equation (1.1e) is obtained from the assumption
that there is no exchange of mass between the two phases, which is confirmed by experimental
studies [3] that showed that the transients are too fast for such exchanges to take place.
Therefore, it is possible to deal with the two phases simultaneously as if they formed a single
fluid (hence the name of ‘single component approximation’). Note that the single component
approximation can be used reliably only for small void ratios. The local sound speed—and
therefore the wave celerity— is extremely sensitive to the value of the pressure and may easily
vary by a factor of 102 or 103 along the pipe. Shocks are then likely to appear and numerical
methods that can handle them are needed. Godunov-type algorithms then appear as very good
candidates, for they can handle any type of wave via the solution of Riemann problems at the
interfaces between the computational cells. A first step in the present work [4] consisted of
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SIMULATION OF TWO-PHASE FLOW IN PIPES 343

studying the feasibility of the solution of the equations above by the first-order, original
Godunov scheme. The conclusions of this work were, among others, that although robust and
reliable, the first-order Godunov scheme was not accurate enough and that higher-order
schemes were needed. However, the implementation of such schemes is not straightforward,
for the following reason.

A feature of pipe transients is that, due to network complexity and to the contrast in the
length of the pipes, the pressure waves may cover several times the pipe length before the
pressure (or depression) peak is reached. The waves are reflected many times at the pipes
boundaries and the accurate computation of their reflections is essential to the quality of the
numerical solution. In particular, the author showed in a previous publication [5] that all the
benefits brought by high-order schemes to compute the waves inside the pipe may be lost if the
problem of boundary conditions is neglected. This is also confirmed by a number of
unpublished numerical experiments carried out in the framework of the present study, where
it was seen that a poor treatment of boundary conditions may lead to more degraded solutions
when combined with higher-order schemes than with the first-order Godunov method. In
addition to the classical problem of sharp fronts and shock modelling, a careful treatment of
boundary conditions was therefore devised.

Section 2 presents the solution technique used, from the reconstruction step to the computa-
tion of intercell fluxes. The treatment of boundary conditions is detailed in Section 3. A
computational example is provided in Section 4. Concluding remarks are eventually provided
in Section 5.

2. TREATMENT OF INTERNAL CELLS

2.1. Outline of the Goduno� technique

The Godunov technique is a finite volume-based algorithm that is based on the weak solution
of the flow Equations (1.1). After discretization of space into a set of computational cells,
Equation (1.1a) becomes

�i
n+1=�i

n+
�t
�xi

(Fi−1/2
n+1/2−Fi+1/2

n+1/2) (2.1)

where �i
n is the average value of � over cell i, and Fi−1/2

n+1/2 is the average value of the flux F at
the interface between cells i-1 and i over the time interval �t= tn+1− tn. The value of the flux
at each interface is determined by the initial distribution of the variable on both sides of this
interface. To compute the fluxes, a three-step algorithm is used, to be detailed in the sequel.

Firstly, the initial distribution of the variable inside a given cell i is determined from the
average values �i in this cell and the neighbouring ones. This is called the reconstruction step.

The reconstructed profile is then used to define a Riemann problem at each interface i+1/2
between cells i and i+ 1, i.e. an initial value problem of the form

�(x)=�i+1/2,L for x�xi+1/2 (2.2a)
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�(x)=�i+1/2,R for x�xi+1/2 (2.2b)

where xi+1/2 is the abscissa of the interface and �i+1/2,L and �i+1/2,R are called the left and
right states respectively. These left and right states depend directly on the reconstructed profile
of the previous step.

The Riemann problem is then solved to provide the value �i+1/2 of � at the interface. The
flux Fi+1/2 is computed using

Fi+1/2=F(�i+1/2) (2.3)

2.2. The DPM reconstruction

The reconstruction step is a crucial point in the performance of the numerical scheme. The
scheme designed by Godunov in 1959 [6] was based on a constant profile. Later on, many
authors presented various options for the reconstruction [7–9]. In all these approaches, the
reconstructed profiles are discontinuous at the cell interfaces only. This hypothesis does not
allow the location of discontinuities that are inside the computational cells. The approach
chosen for the present scheme consists of using a discontinuous reconstruction inside the
computational cells, hence the name of the scheme (discontinuous profile method, or DPM).
Here the non-linear generalization of this approach is presented.

Consider one-dimensional advection of a variable �, and assume that space is discretized
into computational cells of length �xi. At a given time, the average values �i of � over the cells
are assumed to be known. The profile is reconstructed over cell i as follows (see Figure 1)

�(x)=�i,L for x��i�xi (2.4a)

�(x)=�i,R for x��i�xi (2.4b)

Figure 1. Discontinuous reconstruction of the profile over a computational cell. The solid line represents
the average value over the cell; the dashed line shows the reconstructed profile.
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�i� [0, 1] (2.4c)

Note that �i,L and �i,R should not be confused with the left and right states �i+1/2,L and
�i+1/2,R of the Riemann problem, which are related to the left and right sides of the cell edge.
To satisfy mass conservation, �i,L must satisfy

�i�i,L+ (1−�i)�i,R=�i (2.5)

which gives

�i=
�i−�i,R

�i,L−�i,R

(2.6)

Therefore, �i is uniquely determined from the left and right states �i,S, S=L, R. These are
computed using a linear interpolation between the averages over the cells

�i,L=�i,L�i−1+ (1−�i,L)�i (2.7a)

�i,R=�i,R�i+1+ (1−�i,R)�i (2.7b)

�i,S� [0, 1], S=L, R (2.7c)

Equation (2.7c) is a necessary condition for the monotonicity of the solution [7]. The value of
�i,S, S=L, R, depends on the local features of the profile and in particular on its monotonic-
ity. The monotonicity indicator � is defined as follows:

�i=si−1/2si+1/2 (2.8a)

si−1/2=2
�i−�i−1

�xi−1+�xi

(2.8b)

�i�0 means that �i is a local extremum, �i=0 indicates that �i has the same value as one
of its neighbouring cells, and �i�0 is found in the case of a monotonic profile. In the case
�i�0, the only way to satisfy Equation (2.5) is to set both �i,L and �i,R to zero. In other cases,
�i,S must be given a value such that the reconstructed profile is as smooth as possible,
otherwise leading to artificial steepening of the profile and to the formation of discontinuities
that are not justified physically. Consider a profile with a constant slope over cell i, i.e. obeying
the law

	i(x)=�i+six (2.9)

where the origin of x is located at the centre of cell i. In order to emulate second-order
accuracy, a reconstruction �i(x) is looked for that is a close as possible to this ‘target’ profile.
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Due to symmetry considerations, we set �i,L=�i,R=�. To do so, the two functions f and g are
defined as the primitive functions of 	i and �i respectively

f(x)=
� x

−�xi/2

	i(x) dx (2.10a)

g(x)=
� x

−�xi/2

�i(x) dx (2.10b)

the analytical expression for f(x) is obtained by integrating Equation (2.9)

f(x)= (x+�xi/2)�i+ (x2−�xi
2/4)si/2 (2.11)

The expression for g(x) is deduced from Equations (2.4a) and (2.4b)

g(x)={min[x, (�i−1/2)�xi ]+�xi/2}�i,L+{max[x, (�i−1/2)�xi ]− (�i−1/2)�xi}�i,R

(2.12)

Figure 2 shows the shapes of f and g. f is a parabolic function, the second-order derivative of
which has the same sign as the slope si. g is a piecewise linear function, the slope of which is
equal to either �i,L or �i,R depending on the value of x. The primitive function for the original,
constant Godunov reconstruction, also shown on the figure, is a straight line. From Equations
(2.7a) and (2.7b) we obtain

Figure 2. Shapes of f and g.
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�i,L=�i−�si�xi (2.13a)

�i,R=�i+�si�xi (2.13b)

In particular, the discontinuity between �i,L and �i,R should not be too important, otherwise
leading to an artificial steepening of the profile. Therefore g(x) should be equal to f(x) at the
discontinuity between �i,L and �i,R, i.e. for x= (�i−1/2)�xi. Substituting this condition into
Equations (2.11) and (2.12) yields

�i�xi�i+ (� i
2−�i)�xi

2si/2= (�i−�si�xi)�i�xi (2.14)

which simplifies into

�= (1−�i)/2 (2.15)

As �i is dependent on � (via Equations (2.6) and (2.7)), Equation (2.15) cannot be satisfied in
all cases. The best compromise is to satisfy this equality in average, i.e. for �i=

1
2. This gives

�=1/4 (2.16)

Note that any higher value of � leads to profile steepening and that a lower value introduces
smearing. The constant reconstruction of the original Godunov scheme can be seen as a
particular case of the present one, with �=0. As such, this reconstruction does bring some
improvements as compared with the first-order scheme, but is not sufficient to guarantee the
preservation of steep fronts and strong shocks. Therefore, an additional modification is
introduced that consists of setting the coefficient �i,S to 1 if the cell located on side S of cell
i is a local extremum. This can be formulated as

if �i,L=1 if �i−1�0, �i,L=1/4 otherwise (2.17a)

if �i,R=1 if �i+1�0, �i,R=1/4 otherwise (2.17b)

2.3. Characterization of the Riemann problem

At the interface between two computational cells, the reconstructed profile is used to define the
Riemann problem by averaging the eigenvectors over their domain of dependence. In the case
of subcritical flow—as it is the case in most pipe transient simulations— this is equivalent to
averaging the variable � itself over the domain of dependence of the invariants. In the case of
supercritical flow, the procedure is more complicated, as detailed below.

The flux at the interface is given by

Fi+1/2=F(�i+1/2)=F(K
i+1/2) (2.18a)

K=
� 1 1

�1 �2

n
(2.18b)

Copyright © 2001 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2001; 37: 341–359



V. GUINOT348

�k=q/�+ (−1)kc (2.18c)

where K is the matrix formed by the eigenvectors of the Jacobian matrix M=�F/��(see
Appendix A for details on the derivation of M), �k, k=1, 2 are the eigenvalues of M, and

=K−1� contains the co-ordinates of � in the base of the eigenvectors. The derivation of K
is given in Appendix A. In the case of a Riemann problem, i.e. with constant right and left
states, 
i+1/2 is a constant. The DPM reconstruction defines a generalized Riemann problem,
where both states are not necessarily constant. In that case, the value of 
i+1/2 depends on
time. We are therefore interested in the average F� i+1/2 of the flux Fi+1/2 over time

F� i+1/2=
1
�t

� �t

0

Fi+1/2(t) dt (2.19)

To estimate this value, a linearization is applied to approximate F� i+1/2 with

F� i+1/2=F(K
̄i+1/2) (2.20a)


̄i+1/2=
1
�t

� �t

0


i+1/2(t) dt (2.20b)

By performing a variable change along the k-th characteristic curve, the kth component 
̄ i+1/2
(k)

of 
̄i+1/2 is given by


̄ i+1/2
(k) =

1
�t

� �t

0


 i+1/2
(k) (t) dt=

1
�k

� xi+1/2

xi+1/2−�k


 j
(k)(x) dx (2.21)

where �k=�k�t is the horizontal distance covered by the kth characteristic during time �t
(also called the domain of dependence associated to the kth characteristic). Index j denotes the
cell in which the foot of the characteristic is located.

Assume that j= i. If both �1 and �2 are positive in cell i (supercritical flow), then both
components of 
̄i are fully determined in cell i, because both domains of dependence of the
interface i+1

2 lie in cell i. The left state �i+1/2,L is then deduced from

�i+1/2,L=K
̄i (2.22)

Pipe transients are characterized by subcritical flows. In that case the foot of the second
characteristic only lies in cell i, whereas the first one has its foot in cell i+ 1. Consequently,
the value of the first component 
̄ i

(1) of 
̄i does not have any influence on the solution of the
Riemann problem at interface i+1

2. Then the same relationship can be used for both 
̄ i+1/2
(1)

and 
̄ i+1/2
(2)


̄ i
(k)=

1
�2

� xi+1/2

xi+1/2−� 2


 i
(k)(x) dx, k=1, 2 (2.23)
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If matrix K is assumed to be constant over the integration interval, substituting Equation
(2.22) into Equation (2.23) gives

�i+1/2,L=
1
�2

� xi+1/2

xi+1/2−� 2

�i(x) dx (2.24)

A similar reasoning gives the formula for the right state of the Riemann problem

�i+1/2,R=
1
�1

� xi+1/2

xi+1/2−� 1

�i+1(x) dx (2.25)

Therefore, in the subcritical case, the left and right states of the Riemann problem can be
obtained by simply averaging the reconstructed profile over the domain of dependence of the
characteristics.

2.4. Riemann sol�er

The solution of the Riemann problem consists of a zone of constant state, separated from the
left and right states by either shock or rarefaction waves. When the flow is subcritical, the
interface between two computational cells will always be located in the intermediate zone of
constant state. It is then sufficient to compute this intermediate state to compute the fluxes
Fi+1/2. The Riemann solver used here is an approximate-state solver, i.e. the intermediate state
is computed by making an a priori assumption on the nature of the rightward and the leftward
waves. This classical approach was used by Colella [10] and Dukowicz [11], who made the
assumption of two shock waves. A non-iterative solver based on the assumption of two
rarefaction waves was devised by the author [4] for constant wave speeds and later adapted to
variable speeds. An iterative solver was also presented in the same publication for variable
wave speeds [4]. Although iterative, the latter solver produces very accurate results even if a
few iterations are performed. Numerical experiments showed indeed that two iterations were
sufficient to achieve convergence. Its principle is as follows.

The expression for the kth generalized Riemann invariant [12] can be written as

d�

k,1

=
dq
k,2

across dx/dt=�k (2.26)

where k, j is the component on the k-th row and j-th column of matrix K. As following the
first characteristic is equivalent to crossing the second one (and conversely, following the
second characteristic is equivalent to crossing the first one), it is easy to check that Equation
(2.26) can be rewritten as

�2 d�−dq=0 along dx/dt=�1 (2.27a)
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�1 d�−dq=0 along dx/dt=�2 (2.27b)

the two differential relationships (k=1 and k=2) can be approximated according to the
trapezium rule with the following expressions

qi+1/2−qL=
1
2

(ui+1/2−ci+1/2+uL−cL)(�i+1/2−�L) (2.28a)

qi+1/2−qR=
1
2

(ui+1/2+ci+1/2+uR+cR)(�i+1/2−�R) (2.28b)

Since ui+1/2=qi+1/2/�i+1/2 and ci+1/2 is a function of �i+1/2 only. The non-linear system above
can be solved using iterative techniques. In practice, between five and ten iterations are needed
to achieve convergence of the solver with a precision of 10−5 Pa on the pressure and 10−7 kg
s−1 on the mass discharge. However, two iterations only allow convergence with a precision
of 0.1 Pa and 10−3 kg s−1, which is seen as sufficient for most applications. Note that other
types of Riemann solvers, based in particular on Roe’s formulation [13], have been used for
two-phase problems [14,15].

3. BOUNDARY CONDITIONS

3.1. Algorithm o�er�iew

The DPM reconstruction technique uses cells i−1, i and i+1 to reconstruct the profile in cell
i. Consequently the value �1,L cannot be computed directly at the left boundary, because there
is no cell to the left of cell 1. The problem is the same at the right boundary for the state �N,R,
where N is the number of cells in the computational domain. Additional information must
then be supplied so that the reconstruction in the first and last cells is possible. Another
problem associated with schemes for advection that use one or more downstream cells is that
computational results are sensitive to downstream values, even for the scalar advection
equation, whereas the analytical solution is sensitive to upstream values only. Here an
algorithm is proposed to overcome these two problems. This algorithm is derived from an
earlier work conducted by the author on 2×2 systems of linear advection equations [5]. Any
attempt to simplify this algorithm and drop part of it was found to reduce considerably the
quality of the computational results.

The basic idea of the present algorithm is to add two virtual cells at both ends of the pipe
(see Figure 3) so that (i) at least one additional cell is provided for the reconstruction in the
cells at both ends of the pipe, and (ii) the outgoing information (i.e. the eigenvectors) is
evacuated from the domain without bringing any disturbance to the inner cells. The modified
number N* of cells is equal to N+4. The part of the model that represents the real pipe starts
at cell 3 and ends at cell N*−2.

The overall algorithm (including solution computation in the inner cells) comprises three
steps:
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Figure 3. Handling boundary conditions by adding virtual cells at both ends of the computational
domain.

(a) determination of the value of the variable � at the boundaries,
(b) determination of the average quantities � in the virtual cells,
(c) reconstruction in all cells and computation of fluxes at cell interfaces, including the virtual

cells, via the solution of a Riemann problem.

3.2. Determination of boundary �alues �

For the sake of clarity, consider the left-hand boundary only, knowing that the algorithm is
exactly the same for the right-hand boundary. At the left-hand boundary, conservation of the
first eigenvector can be stated

q5/2−q5/2,R=
1
2

(u5/2+c5/2+u5/2,R+c5/2,R)(�5/2−�5/2,R) (3.1)

where q5/2 and �5/2 are the mass discharge and mass per unit length at the left-hand boundary
(interface 5/2) and q5/2,L and �5/2,L are the averages of the reconstructed profiles over the
domain of dependence of the first characteristic passing at 5/2. Note that a first reconstruction
has to be performed in cell 3 prior to the averaging.

Another relationship is available from the boundary condition at interface 5/2

f5/2(�5/2, q5/2)=0 (3.2)

The non-linear system of Equations (3.1) and (3.2) is solved iteratively using any classical
technique such as the Newton–Raphson algorithm. This can be easily generalized to a junction
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between l pipes. Then, there are l relationships of the form (3.1) and one relationship stating
mass conservation (i.e. the sum of all mass discharges at interface 5/2 is equal to 0). The
unknowns are the l discharges for each pipe and the mass per unit length at the interface,
which is the same for all pipes (because the pressure is the same). Therefore, the solution is
unique.

3.3. Computation of �irtual cell a�erages �

Consider the left-hand boundary once again. The previous work mentioned above [5] showed
that the most efficient way of handling boundary conditions via virtual cells consists of leaving
the outgoing eigenvector (here 
 (1)) unchanged and modifying the impinging one (here 
 (2)) so
that its reconstruction in cell 2 is in agreement with the value at interface 1

2, in other words


2,L
(2) =
5/2

(2) (3.3)

The simplest way to do so is to set the values of 
 (2) in cells 1 and 2 according to


1
(2)=
2

(2)=
5/2
(2) (3.4)

Assume that a previous computation has produced the values �1, q1, �2, q2, of the mass per
unit length and the mass discharge in cells 1 and 2 respectively. First compute the vector 
 in
cells 1 and 2


j=K−1��j

qj

n
=

1
2c
� �2 −1

−�1 1
n��j

qj

n
=

1
2c
� �2�j−qj

−�1�j+qj

n
, j=1, 2, 5/2 (3.5)

where c, �1 and �2 are computed at interface 5/2. The index 5/2 is dropped for the sake of
clarity. Applying the rule given by Equation (3.4) yields the updated representation 
 j* of � in
the base of eigenvectors in cells j=1, 2


*j =
1
2c
� �2�j−qj

−�1�5/2+q5/2

n
j=1, 2 (3.6)

Returning to the modified primary variable �* by multiplying 
*j by matrix K

�*j =
1
2c
� �2�j−�1�5/2−qj+q5/2

�1�2(�j−�5/2)−�1qj+�2q5/2

n
j=1, 2 (3.7)

Note that the same matrix K is used for the left boundary and for cells 1 and 2. Although not
strictly rigorous, this provides the economy of an iterative procedure for the determination of
K in cells 1 and 2. The quality of the results was seen not to be affected significantly by the
present simplification. A similar reasoning for the right-hand boundary gives
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�*j =
1
2c
� �2�N*−5/2−�1�j−qN*−5/2+qj

�1�2(�N*−5/2−�j)−�1qN*−5/2+�2qj

n
j=N*−1, N* (3.8)

where �1 and �2 are computed at interface N*−5/2.

3.4. Reconstruction and flux computation

The reconstruction is performed in all cells, including the virtual ones. The right and left states
in the virtual cells are set equal to the average cell value so as to respect the condition given
by Equation (3.4). The reconstruction in the inner cells is performed as explained in Section 2.1.

The fluxes through interfaces 3/2 to N*−1/2 are computed by solving the Riemann problem
defined according to Section 2.3, except at interfaces 5/2 and N*−3/2 (which represent the
extremities of the pipe) where the solution of the system of Equations (3.1) and (3.2) is used
for flux computation.

The mass balance is then performed on cells 2 to N*−1 according to Equation (2.1). Finally,
we update the outgoing eigenvector in cell 1 (resp. N*) by setting it equal to its value in cell
2 (resp. N*−1). To do so, we set �1 equal to �2 and �N* equal to �N*−1. Note that it is essential
to perform the mass balance on cells 2 and N*−1 and to update cells 1 and N*, for this ensures
the correct advection of the outgoing eigenvectors through the pipe boundaries. Suppressing one
of these two steps was observed to degrade the quality of the results.

3.5. Internal boundary conditions

Internal boundary conditions can be dealt with using the algorithm described above, but more
than one pipe (in general m) may be present and joined together. In that case, m equations of
the type (3.1) can be written at each pipe end. The law of nodes provides another equation

�
m

l=1

q5/2,l=0 (3.9)

where q5/2,l is the discharge entering pipe l at the boundary. Moreover the laws for head loss
at each pipe extremity allow m−1 independent equations to be written of the type

fm(�5/2,m, q5/2,m)= fm�(�5/2,m�, q5/2,m�) for any (m, m �) (3.10)

There are therefore 2m equations for 2m unknowns (the mass per unit length and discharge
at each boundary), which means there is a unique solution to the problem. The set of equations
(3.10) is in general non-linear and has to be solved iteratively. Once the values (�5/2,m, q5/2,m)
are known at each pipe boundary, the algorithm described in Sections 3.1 to 3.3 can be applied.

4. COMPUTATIONAL EXAMPLE

The performance of the scheme was illustrated by computing the flow that results from the sudden
opening of a valve located at the midpoint of a pipe. It is very similar to the shock tube problem
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in gas dynamics or to the dambreak problem in shallow water simulations. The pipe and fluid
parameters are presented in Table I. Table II indicates the initial and boundary conditions.
The pipe has a length of 3000 m, the valve is located at x=1500 m. The fluid is initially at rest.
The pressure is 5×105 Pa left of the pipe and 105 Pa on its right-hand side. Both ends of the
pipe are closed and allow no flow. The opening of the valve results in the appearance of a
shock wave and of a rarefaction fan travelling in opposite directions. Both waves are reflected
at the pipe extremities and their nature changes from shock to rarefaction every second
reflection. The numerical solution was compared with an approximate analytical one derived
for times smaller than 2 s, i.e. before the rarefaction wave reaches the pipe extremity. The flow
was computed over 80 s using cell sizes ranging from 10 to 100 m. In order to provide a basis
for comparison, the time step for each of the simulations was chosen such that the maximum
value of the Courant number was equal to unity. Figure 4 shows the profiles obtained using
the Godunov and DPM schemes at time t=2 s. This corresponds to the time at which the
rarefaction wave heading to the left reaches the pipe extremity. At further times, owing to the
no-flow condition, the pressure at the left-hand boundary drops extremely fast. For this
reason, in addition to testing the ability of the scheme to take into account shock and
rarefaction waves, this test indicates very clearly whether computed waves propagate at the
correct speed. Figure 4 shows that both the original Godunov and the DPM schemes introduce
artificial front smearing for a cell size �x=100 m. Still, it will be observed that the width
of the shock computed with the DPM scheme is only two thirds of that computed by
the Godunov scheme. Decreasing the cell size down to 10 m did not allow the head of
the rarefaction wave to be located properly by the Godunov scheme, whereas the

Table I. Physical parameters for test case 1.

Symbol and unitParameter Value

Pipe length L (m) 3000
Nominal cross-sectional area A0 (m2) 0.29

981.4Nominal celerity c0 (m s−1)
992Nominal density �0 (kg m−3)
1�Coefficient in the perfect gas equation
289.9Reference mass per unit length �0 (kg m−1)

Reference void fraction �g,0 2×10−3

Reference pressure 101 325p0 (Pa)

Table II. Initial and boundary conditions for test case 1.

Parameter Symbol and unit Value

Initial mass discharge qi (kg s−1) 0
5×105 for x�1500 m,Initial pressure Pi (Pa)
105 for x�1500 m

Discharge at the left end of the pipe qLE (Pa) 0
0qRE (Pa)Discharge at the right end of the pipe
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Figure 4. Test case 1: computed pressure profiles by the original Godunov and DPM schemes at time
t=2 s.

DPM proved to be able to track it accurately. For the readability of Figure 4, the profiles for
�x=10 m were drawn using every tenth point. Figure 5 shows the pressure history computed
by the Godunov and DPM schemes at the middle of the pipe (that is the location of the initial
pressure discontinuity) for various cell sizes. It can be seen that the amplitude of the computed
oscillations is larger when the DPM is used than with the Godunov scheme. This was
confirmed by experiments carried out using various values of �x. These results are not
displayed for the sake of readability of the figure. Table III and Figure 6 show the average
amplitude of the first ten oscillations obtained for various cell sizes. The amplitudes were
normalized with the amplitude given by the DPM on a cell size of 10 m. It can be seen that
it is sufficient to use the DPM scheme with a cell size of 25 m to obtain a satisfactory
convergence of the amplitude, whereas it is necessary to decrease �x to 10 m when the
Godunov scheme is used. The improvement brought by the DPM over the Godunov scheme
is confirmed by a number of test cases involving a variety of initial and boundary conditions
(more test cases and comparisons with the original Godunov scheme can be found in [16]).
From these cases, it was concluded that the DPM needs in general four to five times fewer cells
than the first-order Godunov scheme to achieve the same accuracy.

5. CONCLUSIONS

The application of higher-order Godunov schemes to the computation of two-phase pipe
transients has been investigated. The efficiency of Godunov-type algorithms can be increased
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Figure 5. Pressure histories at the middle of the pipe for various schemes and cell sizes.

Table III. Average amplitude for various cell sizes.

Average amplitudes normalized with DPM �x=10 m (percentages)

Godunov DPM Godunov DPMDPMGodunovDPMGodunov
�x=25 m �x=25 m �x=10 m �x=10 m�x=100 m �x=100 m �x=50 m �x=50 m

98.1 100.0 99.5 10092.7 96.179.7 86.5

Values are given as percentages. The values obtained with the DPM for �x=10 m are taken as the reference (100 per
cent).

by improving the reconstruction technique. The DPM, detailed in the present contribution,
allows fronts to be located more accurately than the original Godunov technique. The
Riemann problem can be solved using an iterative, approximate-state solver based on the
assumption of two rarefaction waves. Performing a few iterations only (typically two or three)
allows the Riemann problem to be solved with a good accuracy. The treatment of boundary
conditions turns out to be another key factor in the scheme efficiency. The best performances
are achieved by implementing two virtual cells at each end of the computational domain. The
outgoing wave component is advected beyond the boundary into the virtual cells in order to
ensure independence of the solution from the downstream boundary condition. The impinging
wave component is modified in the virtual cells so that its reconstruction yields the value that
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Figure 6. Average amplitude ratio obtained using the Godunov and DPM scheme for various cell sizes.

is prescribed at the boundary. The performances of the DPM scheme are illustrated by a case
that is representative of classical pipe network operations. A comparison between the results
given by the first-order Godunov scheme and the DPM shows that the latter needs four to five
times fewer cells than the former for a comparable quality of the computational results.
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APPENDIX A. EIGENVALUES AND EIGENVECTORS

The equations to be solved are

��

�t
+

�F
�x

=0 (1.1a)

�=
��

q
n

, F=
� q

Ap+q2/�
n

(1.1b)
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d
d�

(Ap)=c2=
cw

2

1+�/p1+1/� (1.1c)

�=�0�0cw
2 p0

1/� (1.1d)

p��=p0�0
� (1.1e)

�g�=�g,0�0 (1.1f)

Equation (1.1a) can also be rewritten under the non-conservative advection form

��

�t
+M

��

�x
=0 (A.1a)

M=

�
�
�
�
�

0 1
�

��
(Ap+q2/�)

�

�q
(Ap+q2/�)

�
�
�
�
�

(A.1b)

Substituting Equation (1.1c) into Equation (A.1b) and noticing that the velocity u is given by
u=q/�, after some straightforward algebra, yields

M=
� 0 1

c2−u2 2u
n

(A.2)

The two eigenvalues �k, k=1, 2 of M satisfy the following relationship

Det
� −�k 1

c2−u2 2u−�k

n
=0 (A.3)

which yields

�k=u+ (−1)kc, k=1, 2 (A.4)

It is easy to check that the eigenvector e (k) associated with the eigenvalue �k, k=1, 2 is given
by

e (k)=
� 1

�k

n
(A.5)

The matrix K formed by the base of the eigenvectors is therefore the following
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K=
� 1 1

�1 �2

n
(A.6)
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